Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 23(3): 301-315, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-37931033

RESUMO

Aberrant activation of the PI3K-AKT pathway is common in many cancers, including melanoma, and AKT1, 2 and 3 (AKT1-3) are bona fide oncoprotein kinases with well-validated downstream effectors. However, efforts to pharmacologically inhibit AKT have proven to be largely ineffective. In this study, we observed paradoxical effects following either pharmacologic or genetic inhibition of AKT1-3 in melanoma cells. Although pharmacological inhibition was without effect, genetic silencing of all three AKT paralogs significantly induced melanoma cell death through effects on mTOR. This phenotype was rescued by exogenous AKT1 expression in a kinase-dependent manner. Pharmacological inhibition of PI3K and mTOR with a novel dual inhibitor effectively suppressed melanoma cell proliferation in vitro and inhibited tumor growth in vivo. Furthermore, this single-agent-targeted therapy was well-tolerated in vivo and was effective against MAPK inhibitor-resistant patient-derived melanoma xenografts. These results suggest that inhibition of PI3K and mTOR with this novel dual inhibitor may represent a promising therapeutic strategy in this disease in both the first-line and MAPK inhibitor-resistant setting.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células , Morte Celular
2.
Cancers (Basel) ; 13(17)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34503272

RESUMO

Oncolytic viruses (OVs) are being developed as a type of immunotherapy and have demonstrated durable tumor responses and clinical efficacy. One such OV, Coxsackievirus A21 (CVA21), exhibited therapeutic efficacy in early phase clinical trials, demonstrating the ability to infect and kill cancer cells and stimulate anti-tumor immune responses. However, one of the major concerns in using this common cold virus as a therapeutic is the potential for innate and adaptive immune responses to mitigate the benefits of viral infection, particularly in individuals that have been exposed to coxsackievirus prior to treatment. In this study, we assess melanoma responses to CVA21 in the absence or presence of prior exposure to the virus. Melanomas were transplanted into naïve or CVA21-immunized C57BL6 mice and the mice were treated with intratumoral (IT) CVA21. We find that prior exposure to CVA21 does not dramatically affect tumor responses, nor does it alter overall survival. Our results suggest that prior exposure to coxsackievirus is not a critical determinant of patient selection for IT CVA21 interventions.

3.
Pharmaceuticals (Basel) ; 13(1)2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31906519

RESUMO

Potential anti-inflammatory and anticarcinogenic effects of aspirin (ASA) may be suitable for melanoma chemoprevention, but defining biomarkers in relevant target tissues is prerequisite to performing randomized controlled chemoprevention trials. We conducted open-label studies with ASA in 53 human subjects with melanocytic nevi at increased risk for melanoma. In a pilot study, 12 subjects received a single dose (325 mg) of ASA; metabolites salicylate, salicylurate, and gentisic acid were detected in plasma after 4-8 h, and prostaglandin E2 (PGE2) was suppressed in both plasma and nevi for up to 24 h. Subsequently, 41 subjects received either 325 or 81 mg ASA (nonrandomized) daily for one week. ASA metabolites were consistently detected in plasma and nevi, and PGE2 levels were significantly reduced in both plasma and nevi. Subchronic ASA dosing did not affect 5" adenosine monophosphate-activated protein kinase (AMPK) activation in nevi or leukocyte subsets in peripheral blood, although metabolomic and cytokine profiling of plasma revealed significant decreases in various (non-ASA-derived) metabolites and inflammatory cytokines. In summary, short courses of daily ASA reduce plasma and nevus PGE2 and some metabolites and cytokines in plasma of human subjects at increased risk for melanoma. PGE2 may be a useful biomarker in blood and nevi for prospective melanoma chemoprevention studies with ASA.

4.
Cell Rep ; 13(5): 898-905, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26565903

RESUMO

Metastases are the major cause of melanoma-related mortality. Previous studies implicating aberrant AKT signaling in human melanoma metastases led us to evaluate the effect of activated AKT1 expression in non-metastatic BRAF(V600E)/Cdkn2a(Null) mouse melanomas in vivo. Expression of activated AKT1 resulted in highly metastatic melanomas with lung and brain metastases in 67% and 17% of our mice, respectively. Silencing of PTEN in BRAF(V600E)/Cdkn2a(Null) melanomas cooperated with activated AKT1, resulting in decreased tumor latency and the development of lung and brain metastases in nearly 80% of tumor-bearing mice. These data demonstrate that AKT1 activation is sufficient to elicit lung and brain metastases in this context and reveal that activation of AKT1 is distinct from PTEN silencing in metastatic melanoma progression. These findings advance our knowledge of the mechanisms driving melanoma metastasis and may provide valuable insights for clinical management of this disease.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Pulmonares/metabolismo , Melanoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Neoplasias Encefálicas/secundário , Linhagem Celular Tumoral , Embrião de Galinha , Inibidor p16 de Quinase Dependente de Ciclina/genética , Humanos , Neoplasias Pulmonares/secundário , Melanoma/genética , Melanoma/patologia , Camundongos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-akt/genética , Serina-Treonina Quinases TOR/metabolismo
5.
Plant Cell ; 27(3): 513-31, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25783031

RESUMO

Endosperm is an absorptive structure that supports embryo development or seedling germination in angiosperms. The endosperm of cereals is a main source of food, feed, and industrial raw materials worldwide. However, the genetic networks that regulate endosperm cell differentiation remain largely unclear. As a first step toward characterizing these networks, we profiled the mRNAs in five major cell types of the differentiating endosperm and in the embryo and four maternal compartments of the maize (Zea mays) kernel. Comparisons of these mRNA populations revealed the diverged gene expression programs between filial and maternal compartments and an unexpected close correlation between embryo and the aleurone layer of endosperm. Gene coexpression network analysis identified coexpression modules associated with single or multiple kernel compartments including modules for the endosperm cell types, some of which showed enrichment of previously identified temporally activated and/or imprinted genes. Detailed analyses of a coexpression module highly correlated with the basal endosperm transfer layer (BETL) identified a regulatory module activated by MRP-1, a regulator of BETL differentiation and function. These results provide a high-resolution atlas of gene activity in the compartments of the maize kernel and help to uncover the regulatory modules associated with the differentiation of the major endosperm cell types.


Assuntos
Compartimento Celular , Diferenciação Celular/genética , Endosperma/citologia , Redes Reguladoras de Genes , Microdissecção e Captura a Laser/métodos , Análise de Sequência de RNA/métodos , Zea mays/embriologia , Sequência de Bases , Endosperma/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Impressão Genômica , Dados de Sequência Molecular , Motivos de Nucleotídeos/genética , Polinização , Análise de Componente Principal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Técnicas do Sistema de Duplo-Híbrido , Zea mays/genética
6.
Proc Natl Acad Sci U S A ; 111(21): 7582-7, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24821765

RESUMO

Endosperm is a filial structure resulting from a second fertilization event in angiosperms. As an absorptive storage organ, endosperm plays an essential role in support of embryo development and seedling germination. The accumulation of carbohydrate and protein storage products in cereal endosperm provides humanity with a major portion of its food, feed, and renewable resources. Little is known regarding the regulatory gene networks controlling endosperm proliferation and differentiation. As a first step toward understanding these networks, we profiled all mRNAs in the maize kernel and endosperm at eight successive stages during the first 12 d after pollination. Analysis of these gene sets identified temporal programs of gene expression, including hundreds of transcription-factor genes. We found a close correlation of the sequentially expressed gene sets with distinct cellular and metabolic programs in distinct compartments of the developing endosperm. The results constitute a preliminary atlas of spatiotemporal patterns of endosperm gene expression in support of future efforts for understanding the underlying mechanisms that control seed yield and quality.


Assuntos
Endosperma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Zea mays/genética , Biologia Computacional , Perfilação da Expressão Gênica , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Fatores de Tempo , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...